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POD

Find a deterministic coordinate
function ¢(x,y) that best correlates
with all the elements of a set of
randomly fluctuating wind pressure
fields p (x,y,1).

@(X,y) Is derived to maximize the
projection from the wind pressure
field p (x,y,t) to the deterministic
coordinate function @(x,y).

Maximization of Projection

Realize from the probabilistic
standpoint:

pOxy,H@(X,y) dxdy = max
By normalizing:
p(x.y,H)@(x.y) dxdy
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Maximization of Projection

p(x,y,t) can take positive or negative values

— Maximization is made by a mean square
method

p(xy,H)@(xy) dxdy p(x"y"Hg(x"y") dx'dy”
(x.y)? dxdy
— Eigenvalue Problem
Rp (le1xl’y') ¢(X'1yl) dX'dy' A ¢(le)
Rp (X,y,x"y") Spatial Correlation of p(x,y,t)

Uniformly Distributed dxxdy

Matrix Form

[Relig} g}

[Rp] : Spatial Correlation Matrix
MxM Square Matrix
{#} : Eigenvector of Spatial
Correlation Matrix [Rp]
A : Eigenvalue of Spatial
Correlation Matrix [Rpl




Fluctuating Pressure Field p(x,y,t)

M
p(x,y,t) = 2 ay,(0) én(X.Y)

P(X,Y, 1) @, (X,y)dxdy

n(X.y)?dxdy
. m-th Principal Coordinate

#.(X,y) : m-th Eigenvector
(Eigen Mode)

a(t) =

Correlation Between
Principal Coordinates

No correlation between different modes :

a,(t)a,(t) = 0 m=*=n

Mean square of the m-th principal
coordinate :

a.(t)> = A, = Eigenvalue




Mean Square of Wind Pressure

Mean-square of wind pressure at
point(x,y) M

piy.)? = X A Pr(x.y)?

Field-total sum of mean-square wind
pressures M

p(x,y,t) 2 dxdy :mZ y

=1

Reconstruction in Lower Modes

POGY.D) = 2 a (1) (XY

N<M




Fluctuating Pressure Field
(Fluctuating Component Only)

p4(t)
’_‘S“,[ﬁv%gﬁ@gt
P,(t) & - Q
t
pa(t) ~ N
t

Lt btk

State Locus of
Fluctuating Pressure Field

ps(t)

QN




State Locus on Same Plane

n(t)

ay(t)

State Locus on Same Line




Projection of State Locus
onto Principal Coordinate

Maximization of Projection

Maximization of variance

not maximization of mean square
— analyze “fluctuating component” only
(zero mean)




Principal Coordinates
a,(t) ay(t) as(t)

Linear combination of original
(physical) coordinates p,(t) ps(t) ps(t)

a1 (t) = @11 p1(t) + @15 Po(1) + @13 p5(1)
(1) = @1 P1(1) + @5, Po(1) + Br3P5(1)
a3(t) = @51 P1(1) + @5, Po(1) + B33 p5(1)

18} = [¢1p}

Coordinate Transformation
Matrix [@ ]

9] = [¢u]

m-th row vector

{¢m} = {¢m1 J ¢m2 ’ ¢m3}T

- m-th Eigenvector




Maximization of Variance of
the 1st Mode Principal Coordinate a,(t)

Assumption

- No correlation between principal
coordinates a,(t) a,(t) as(t)

- Unit norm of eigenvector

¢ml2 +¢m22 +¢m32 =1

Variance of 1st Principal Coordinate a,(t)
0, = {a, ()}
{@11P1(1) + B12 Do) + Bi3p3(1)}
$11°01° + $1,°0,° +P13° Gy
t 201101,01,F 2011613013
+ 201013053

o0,,° . Variance of the 1st principal
coordinate a,(t)

o2 . Variance of fluctuating pressure p,|(t)
o, - Covariance of p,(t) and p,(t)
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Lagrange’s Method of Indeterminate
Coefficients

Maximizing variance o,; of a,(t) is
equivalent to maximizing the
following value L:

L = 0% +A (42 + ¢,° + d5° = 1)

A : constant

(v P+ P+ iy’ =

Differential Coefficient of L by ¢,

oL _
=0
oL a¢1m

0P,

aL\ (0,%-A) @, 0y, ¢, t 013 93 =0 (3)
O,

6L\ Oy i1+ (0,°=A) 1, 70y 3= 0 (D)

0@y3
03 iy T Oy P, + (03°-A) ¢y3= 0 \(€)
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Condition for Non-trivial Solution
Determinant of Coefficients =0
(01°-4) o, 013

oy (0=1) oy
031 oy (03°-A)

— Eigenvalue Problem of Matrix [Rp]

Covariance Matrix

- Variance

o; = o; : Covariance
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Equation (d) has three roots:

A=A, by A
(2 4,2 43)

Eq.(a)x¢y, +EQ.(b)x¢1,+EQ.(C)x 45

| $1°0° T4,°0)° Tyt oy
: "'2¢11¢120'12"'2¢11¢130'13+2¢12¢130'23

-  0,° 2/1 — Max. Ay

Variance of Principal | _ -
Coordinate )= Eigenvalue
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Orthogonality of Eigenvectors of Matrix

{¢m}T{¢n} =2 ¢mj ¢nj
f §m1¢n1 + PPt PraPns

O - Kronecker’s Delta

Reconstruction of Pressure Field

Reconstruction by principal
coordinates a,(t), a,(t), a;(t) and
eigenvectors

P1(t) = @y ay(t) + @,y a,5(t) + @3y as(t)
Po(t) = g a(t) + @y a,(t) + @3y as(t)
Pa(t) = diz3a;(t) + Brza,(t) + dyza5(t)

{p} = [¢]'{a}
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Proportion of m-th Mode

Proportion of m-th Principal Coordinate

C . — .
o Variance of Original Pressure Field

Proportion and
Cumulative Proportion

Proportion of m-th Principal*Coordinate
Ay

Cr

M
mzll)lm
Cumulative Proportion up to N-th Modeé

N\
CN mz 1Cm

Variance of m-th Principal Coordinate
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Fluctuating Pressure Field

e l\_f\‘/\/\/\/\/‘
t

P,(t)
W t
P3(0) “N‘/\/\/\/\/\
t

Ltttk

Low-rise Building Model
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Randomly Fluctuating Pressures

Mean and Standard Deviation of

Fluctuating Pressures

Wind Pressures on Surfaces of a Low-rise Building Model
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Eigenvectors

of the Lowest Three Modes
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Eigenvalues, Proportions
and Cumulative Proportions

Wind Pressures on Surfaces of a Low-rise Building Model

Mode Eigenvalue Proportion (%) Cumulative
Proportion (%)

it 1411 40.20 40.20
28 295 8.40 48.60

SiE 224 6.39 54.99
4th 175 4.98 59.97
Sl 128 3.66 63.63
gth 102 291 66.54
7 80 2.29 68.83
gth 75 2.12 70.95
gth 61 e 72.69
10th 5% 151 74.20




(a) Mean pressure (b) Fluctuating pressure
coefficient Cp coefficient C;’

Pressure distributions on a low-rise building
model (A=45° D-B-H=4-4"-1)

Lowest Three Eigenvectors

::.:.J_ A

.5

1st Mode 2nd Mode 3rd Mode
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High-rise Building Model

Pressure Measurement Model and
Analytical Lumped Mass Model

B=Icm
o ~ . D=10cm B |ength Scale = 1/400
25 [
T I B Mean Wind Speed Profile
a=1/6
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Mean and Standard Deviation of

Fluctuating Pressures

Wind Pressures on Surfaces of a High-rise Building Model
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Eilgen Vectors
of 3rd, 4th and 5th Modes

Fluctuating pressures acting on a-high-rise building model

N T 03 . 04
4+ Wind 4+ Wind 4 Wwind

4th Mode

4th Mode
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Along-wind force coefficients at 0.2H and 0.8H by 4th

mode (Suburban flow, a=1/6)




5th Mode

Along-wind force coefficients at 0.2H and 0.8H by 5th
mode (Suburban flow, a=1/6)

Eigenvalues, Proportions
and Cumulative Proportions

Wind Pressures on Surfaces of a High-rise Building Model

Mode Eigenvalue Proportion (%) Cumulative
Proportion (%)

st ) 26.30
2nd .70 16.70
3rd ) ]
Ath

5th

10th

5Qth

100th

300th

500th
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Power Spectral Densities of Wind

Forces

T
1st mode
107! i Across-wind force

y

F Along-wind force
[ F,

x

103]

Power spectra nS(n)/( qBH2 )2
=)
[~
Power spectra nS(n)

—
<
S
T

Torsional moment

10° ‘

0% 10?2 10! 10°
nB/U

Generalized Wind Forces Lowest Five

Principal Coordinates

Fluctuating Wind Force Coefficients
by Each Mode (a = 1/6)
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Fluctuating Wind Force Coefficients

by Each Mode (a 5))

——Original 16th mode
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Power Spectra of Generalized Wind Forces
Reconstructed by Selected Dominant Modes (a = 1/6)
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Generalized Wind Forces Reconstructed

from Selected Dominant Modes

Along-wind 2, WW/W
Force —— Original
2nd,3rd and 4th modes

100 120 140 160 180 200

Across-wind T
Force

1st and 5th modes

0.50 Flow:1/6
100 120 140 160 180 200
0.10 T - -
Torsional Vg
Moment
Flow:1/6 ) — 10 selected modes

120 140 160 180 200
Time(s)




Response Analysis in Time Domain

Analytical Condition Analytical Model and Forces

m Coupled oscillation of along- ~ ® 25 Lumped masses x3DOF

)[Nind, aclross-wind atnd O Fundamental natural
orsional components periods : Ty, = Ty =55

O Newmark gmethod : g = 1/4 T,p=188
O Time interval :  At=0.271s O Damping ratios : %&/pcg? the
O Calculation length : T=600s g \n/ind forces: “

O Tip mean wind speed : - based on original pressures
(H=200m) V,, =55m/s - based on reconstructed

(100y-recurrence in Tokyo) pressures by selected
dominant modes
Along-wind : 2nd, 3rd &ih
Across-wind : 15t & 5t
Torsional  : 1st 5t 3t
(10 modes)

Responses due to Wind Forces Reconstructed
from Selected Dominant Modes

50

0 MAALAA A NANY A A

—— Original
Flow : 1/6 2nd,3rd and 4th modes

100 120 140 160 180

PAMAAAN A\ )

Flow : 1/6 Ist and 5th modes

0 120 160 180 200

Along-wind
Displacement

-50

Across-wind
Displacement

Torsional

Selected 10 modes
Flow : 1/6 (1,5,10,11,13,14,16,18,21 and 31st modes)

-0.02
100 2 140 160 180 200

Time(s)

Angular displacement{rad) Displacement(cm) Displacement{cm)




Responses due to Wind Forces Reconstructed
from Selected Dominant Modes

o Ox(original)
u O)(original)
 Q4(2nd,3rd and 4th modes)

2nd,3rd and b4, T Qy(Ist and 5th modes)
4th modes e

+ J (Along-wind |

Original

Original

Original

» ] 7 3 1 2nd3rd and
e Dy(original) H )L 4thmodes

u Dy(original)

= Dx(2nd,3rd and g
4th modes) B " 1stand 5th

2 Dy(Ist and 5th modes) i motlies

Il
10 20 30 40 50 60 2000
Displacement(cm) 0.,Q, CX10°N)
. Oy

Displacement Shear Force

Responses due to Wind Forces Reconstructed
from Selected Dominant Modes

Wind Forces Response at Top (H=200m)

Along-wind Across-wind Angular
Displacement Displacement Displacement
(cm) (cm) (cm)
Max S.D. Max S.D. Max Sib.

Original 213 6.67 56.6 16.8 0.0107 0.0025

Reconstructed 225 6.46 53.7 159 0.0112 1 0.0026
from Selected

Dominant Modes (279, 3"d and 4t) (1stand 5%) (10 selected®)
Error (%) 5.6 3.1 51 5.7 4.8 3.4

* 1st 5th 10th, 11th, 13th, 14th 16t 18th, 21st and 315t Modes
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Coordinate Transformation
Matrix [A]

Matrix [A] as an operator for
transforming the coordinate

0} = [A] 1@}

Vector {a} is transformed to another
Vector {b} of a different magnitude
and a different direction by
operation of Matrix [A]

Eigenvalue and Eigenvector

[t

Eigenvalues : A= 4.41, 1.59
Eigenvectors: {1, 2.41}T, {1, -044}"




Coordinate Transformation Matrix
and Eigenvalue / Eigenvector

{b} = [2] {a}

Coordinate Transformation Matrix
and Eigenvalue / Eigenvector

{b} = [2] {a}
= A {a}

Magnification Eactor
= Eigenvalue

a : Unit Vector
lal=1
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Coordinate Transformation Matrix
and Eigenvalue / Eigenvector

Coordinate Transformation Matrix
and Eigenvalue / Eigenvector
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POD of Random Field
with a Singular Condition

Eigenvalues : A =a (multiple root)
' Indeterminate !

ncorrelated with
the same variances!

Example of Eigenvectors
Sample A

1st Mode | 2nd Mode ‘
c; =29.2% Cc, =25.4%
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Example of Eigenvectors
Sample B

¢, = 30.6% C, = 24.7%

State Locus by a,(t) and a,(t)

nd Principal Coordinate

1st Principal Coordinate 1st Principal Coordinate

Sample A Sample B
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Eigenvalues and Proportions
with/without Inclusion of Mean Value

Without Mean Value With Mean Value

Mode Eigenvalue Proportion (%) Eigenvalue Proportion (%)

st 411 80.1 103.11 98.1
27 1.02 2.03 1.9

Merits of POD

Observe phenomena by most efficient
coordinates

Extract hidden systematic structures
from random information

A significant reduction in amount of:
information that needs to be stored
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