

Lecture 9

Efficient Observation of Random Phenomena

Tokyo Polytechnic University
The 21st Century Center of Excellence Program

Yukio Tamura

POD

- Proper Orthogonal Decomposition
- Stochastic Representation of Factor Analysis
- Karhunen-Loève Decomposition

POD

- Find a deterministic coordinate function $\phi(x,y)$ that best correlates with all the elements of a set of randomly fluctuating wind pressure fields p(x,y,t).
- $\phi(x,y)$ is derived to maximize the projection from the wind pressure field p(x,y,t) to the deterministic coordinate function $\phi(x,y)$.

Maximization of Projection

Realize from the probabilistic standpoint:

$$p(x,y,t)\phi(x,y) dxdy = \max$$

By normalizing:

$$\frac{p(x,y,t)\phi(x,y) dxdy}{\{\phi(x,y)^2 dxdy\}^{1/2}} = \max$$

Maximization of Projection

p(x,y,t) can take positive or negative values

Maximization is made by a mean square method

 $p(x,y,t)\phi(x,y) dxdy \quad p(x',y',t)\phi(x',y') dx'dy'$

= max

 $\phi(x,y)^2 dxdy$

Eigenvalue Problem

 $R_P(x,y,x',y') \phi(x',y') dx'dy' = \lambda \phi(x,y)$

 $R_p(x,y,x',y')$: Spatial Correlation of p(x,y,t)

Uniformly Distributed $dx \times dy$

Matrix Form

 $[Rp]\{\phi\} = \lambda\{\phi\}$

[R_p]: Spatial Correlation Matrix

(M×M Square Matrix)

 $\{\phi\}$: Eigenvector of Spatial

Correlation Matrix $[R_p]$

λ: Eigenvalue of Spatial

Correlation Matrix $[R_p]$

Fluctuating Pressure Field p(x,y,t)

$$p(x,y,t) = \sum_{m=1}^{M} a_m(t) \phi_m(x,y)$$

$$a_m(t) = \begin{cases} p(x,y,t)\phi_m(x,y)dxdy \\ \phi_m(x,y)^2dxdy \end{cases}$$

: m-th Principal Coordinate

 $\phi_m(x,y)$: m-th Eigenvector (Eigen Mode)

Correlation Between Principal Coordinates

No correlation between different modes:

$$\overline{a_m(t) a_n(t)} = 0 (m n)$$

Mean square of the *m***-th principal coordinate :**

$$\overline{a_m(t)^2} = \lambda_m =$$
Eigenvalue

Mean Square of Wind Pressure

Mean-square of wind pressure at point(x,y)

$$\frac{\overline{p(x,y,t)^2}}{p(x,y,t)^2} = \sum_{m=1}^{M} \lambda_m \phi_m(x,y)^2$$

Field-total sum of mean-square wind pressures

$$\frac{p(x,y,t)^{2}}{p(x,y,t)^{2}}dxdy = \sum_{m=1}^{M} \lambda_{m}$$

$$= \sum_{m=1}^{M} \overline{a_{m}(t)^{2}}$$

Reconstruction in Lower Modes

$$\hat{p}(x,y,t) \approx \sum_{m=1}^{N} a_m(t) \phi_m(x,y)$$

$$(N \leq M)$$

Maximization of Projection

Maximization of variance

$$\sigma_{a1}^{2} = \frac{1}{M} \sum_{j=1}^{M} a_{1j}^{2}$$

not maximization of mean square analyze "fluctuating component" only (zero mean)

Principal Coordinates $a_1(t)$, $a_2(t)$, $a_3(t)$

Linear combination of original (physical) coordinates $p_1(t)$, $p_2(t)$, $p_3(t)$

$$a_1(t) = \phi_{11}p_1(t) + \phi_{12}p_2(t) + \phi_{13}p_3(t)$$

$$a_2(t) = \phi_{21}p_1(t) + \phi_{22}p_2(t) + \phi_{23}p_3(t)$$

$$a_3(t) = \phi_{31}p_1(t) + \phi_{32}p_2(t) + \phi_{33}p_3(t)$$

$$\{a\} = [\phi]\{p\}$$

Coordinate Transformation Matrix $[\phi]$

$$[\phi] = [\phi_{ij}]$$

m-th row vector

$$\{\phi_m\} = \{\phi_{m1}, \phi_{m2}, \phi_{m3}\}^{\mathrm{T}}$$
m-th Eigenvector

Maximization of Variance of the 1st Mode Principal Coordinate $a_1(t)$

- **■**Assumption
- No correlation between principal coordinates $a_1(t)$, $a_2(t)$, $a_3(t)$
- Unit norm of eigenvector

$$\phi_{m1}^2 + \phi_{m2}^2 + \phi_{m3}^2 = 1$$

Variance of 1st Principal Coordinate $a_I(t)$

$$\sigma_{a1}^{2} = \overline{\{a_{1}(t)\}^{2}}$$

$$= \{\phi_{11}p_{1}(t) + \phi_{12}p_{2}(t) + \phi_{13}p_{3}(t)\}^{2}$$

$$= \phi_{11}^{2}\sigma_{1}^{2} + \phi_{12}^{2}\sigma_{2}^{2} + \phi_{13}^{2}\sigma_{3}^{2}$$

$$+ 2\phi_{11}\phi_{12}\sigma_{12} + 2\phi_{11}\phi_{13}\sigma_{13}$$

$$+ 2\phi_{12}\phi_{13}\sigma_{23}$$

 σ_{al}^2 : Variance of the 1st principal coordinate $a_I(t)$

 σ_m^2 : Variance of fluctuating pressure $p_m(t)$

 σ_{mn} : Covariance of $p_m(t)$ and $p_n(t)$

Lagrange's Method of Indeterminate Coefficients

Maximizing variance σ_{al}^2 of $a_1(t)$ is equivalent to maximizing the following value L:

$$L = \sigma_{a1}^2 + \lambda (\phi_{11}^2 + \phi_{12}^2 + \phi_{13}^2 - 1)$$

1: constant

$$(:: \phi_{II}^2 + \phi_{I2}^2 + \phi_{I3}^2 = 1)$$

Differential Coefficient of L by ϕ_{lm}

$$\frac{\partial L}{\partial \phi_{Im}} = 0$$

$$\frac{\partial L}{\partial \phi_{Im}} = \mathbf{0}$$

$$\frac{\partial L}{\partial \phi_{Im}} (\sigma_{I}^{2} - \lambda) \phi_{II} + \sigma_{I2} \phi_{I2} + \sigma_{I3} \phi_{I3} = \mathbf{0} \quad (a)$$

$$\frac{\partial L}{\partial \phi_{I2}} \sigma_{2I} \phi_{II} + (\sigma_{2}^{2} - \lambda) \phi_{I2} + \sigma_{23} \phi_{I3} = \mathbf{0} \quad (b)$$

$$\frac{\partial L}{\partial \phi_{I3}} \sigma_{3I} \phi_{II} + \sigma_{32} \phi_{I2} + (\sigma_{3}^{2} - \lambda) \phi_{I3} = \mathbf{0} \quad (c)$$

$$\sigma_{2I} \phi_{II} + (\sigma_2^2 - \lambda) \phi_{I2} + \sigma_{23} \phi_{I3} = 0$$
 (b)

$$\sigma_{31} \phi_{11} + \sigma_{32} \phi_{12} + (\sigma_3^2 - \lambda) \phi_{13} = 0 \quad (c)$$

Condition for Non-trivial Solution

Determinant of Coefficients = 0

$$\begin{vmatrix} (\sigma_{1}^{2} - \lambda) & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & (\sigma_{2}^{2} - \lambda) & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & (\sigma_{3}^{2} - \lambda) \end{vmatrix} = 0$$

Eigenvalue Problem of Matrix $\begin{bmatrix} R_p \end{bmatrix}$

Covariance Matrix $[R_p] = \begin{bmatrix} \sigma_{1}^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{2}^2 & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{3}^2 \end{bmatrix}$ $\sigma_{i}^2 : \text{Variance}$ $\sigma_{ij} = \sigma_{ji} : \text{Covariance}$

Equation (d) has three roots:
$$\lambda = \lambda_1, \ \lambda_2, \ \lambda_3$$
 $(\lambda_1 \ge \lambda_2 \ge \lambda_3)$

Eq.(a)×
$$\phi_{II}$$
+Eq.(b)× ϕ_{I2} +Eq.(c)× ϕ_{I3}

$$\begin{vmatrix} \phi_{II}^{2}\sigma_{I}^{2} + \phi_{I2}^{2}\sigma_{2}^{2} + \phi_{I3}^{2}\sigma_{3}^{2} & \sigma_{aI}^{2} \\ +2\phi_{II}\phi_{I2}\sigma_{I2} + 2\phi_{II}\phi_{I3}\sigma_{I3} + 2\phi_{I2}\phi_{I3}\sigma_{23} & -\lambda (\phi_{II}^{2} + \phi_{I2}^{2} + \phi_{I3}^{2}) & = 0 \end{vmatrix}$$

$$\rightarrow \sigma_{aI}^{2} = \lambda \rightarrow \text{Max.} \lambda_{I}$$
Variance of Principal Coordinate = Eigenvalue

Orthogonality of Eigenvectors of Matrix

$$\{\phi_{m}\}^{T}\{\phi_{n}\} = \sum \phi_{mj}\phi_{nj}$$

$$= \phi_{m1}\phi_{n1} + \phi_{m2}\phi_{n2} + \phi_{m3}\phi_{n3}$$

$$= \delta_{mn}$$

$$\delta_{mn}: \text{ Kronecker's Delta}$$

$$= \{ \begin{cases} 1, m = n \\ 0, m \neq n \end{cases}$$

Reconstruction of Pressure Field

Reconstruction by principal coordinates $a_1(t)$, $a_2(t)$, $a_3(t)$ and eigenvectors

$$\begin{aligned}
 p_1(t) &= \phi_{11} a_1(t) + \phi_{21} a_2(t) + \phi_{31} a_3(t) \\
 p_2(t) &= \phi_{12} a_1(t) + \phi_{22} a_2(t) + \phi_{32} a_3(t) \\
 p_3(t) &= \phi_{13} a_1(t) + \phi_{23} a_2(t) + \phi_{33} a_3(t) \\
 &\{p\} = [\phi]^T \{a\}
 \end{aligned}$$

Proportion of *m***-th Mode**

Proportion of m-th Principal Coordinate

$$c_m = \frac{\text{Variance of } m\text{-th Principal Coordinate}}{\text{Variance of Original Pressure Field}}$$
$$= \frac{\sigma_{am}^2}{\sigma_I^2 + \sigma_2^2 + \sigma_3^2}$$

$$= \frac{\sigma_{am}^{2}}{\sigma_{a1}^{2} + \sigma_{a2}^{2} + \sigma_{a3}^{2}}$$

$$= \frac{\lambda_{1}^{2} + \lambda_{2}^{2} + \lambda_{3}^{2}}{\lambda_{1}^{2} + \lambda_{2}^{2} + \lambda_{3}^{2}}$$

$$\lambda_1 + \lambda_2 + \lambda_3$$

Proportion and Cumulative Proportion

Proportion of m-th Principal Coordinate

$$c_m = \frac{\lambda_m}{\sum_{m=1}^{M} \lambda_m}$$

Cumulative Proportion up to N-th Mode

$$C_N = \sum_{m=1}^N c_m$$

Eigenvalues, Proportions and Cumulative Proportions Wind Pressures on Surfaces of a Low-rise Building Model							
Mode	Eigenvalue	Proportion (%)	Cumulative Proportion (%)				
1 st	1411	40.20	40.20				
2 nd	295	8.40	48.60				
3 rd	224	6.39	54.99				
4 th	175	4.98	59.97				
5 th	128	3.66	63.63				
6 th	102	2.91	66.54				
7 th	80	2.29	68.83				
8 th	75	2.12	70.95				
9th	61	1.74	72.69				
10 th	53	1.51	74.20				

High-rise Building Model

Eigenvalues, Proportions and Cumulative Proportions Wind Pressures on Surfaces of a High-rise Building Model							
Mode	Eigenvalue	Proportion (%)	Cumulative Proportion (%)				
1st 2nd 3rd 4th 5th	132.00 83.70 32.60 25.80 25.20	26.30 16.70 6.51 5.16 5.04	26.30 43.00 49.51 54.67 59.71				
10 th	7.19	1.44	71.43				
50 th	0.74	0.15	89.24				
100 th	0.26	0.05	93.47				
300 th	0.06	0.01	98.50				
500 th	0.01	0.00	100.00				

Response Analysis in Time Domain

- **■Analytical Condition**
 - Coupled oscillation of alongwind, across-wind and torsional components
 - □ Newmark β method : $\beta = 1/4$
 - **■** Time interval: $\Delta t = 0.271s$
 - □ Calculation length : T = 600s
 - □ Tip mean wind speed: $V_H = 55$ m/s (H=200m)(100y-recurrence in Tokyo)

- Analytical Model and Forces
 - 25 Lumped masses ×3DOF
 - **■** Fundamental natural periods: $T_{IX} = T_{IY} = 5$ s $T_{1\theta} = 1.3$ s
 - Damping ratios : 2% to the critical
 - **Wind forces:**
 - based on original pressures
 - based on reconstructed

pressures by selected dominant modes

Along-wind: 2nd, 3rd & 4th
Across-wind: 1st & 5th
Torsional: 1st, 5th31st 10 modes

from Selected Dominant Modes										
Wind Forces	Response at Top (H=200m)									
	Along-wind Displacement (cm)		Across-wind Displacement (cm)		Angular Displacement (cm)					
	Max	S.D.	Max	S.D.	Max	S.D.				
Original	21.3	6.67	56.6	16.8	0.0107	0.0025				
Reconstructed	22.5	6.46	53.7	15.9	0.0112	0.0026				
from Selected Dominant Modes	(2 nd , 3 rd	and 4 th)	(1st an	nd 5 th)	(10 sel	ected*)				
Error (%)	5.6	3.1	5.1	5.7	4.8	3.4				

Coordinate Transformation Matrix [A]

Matrix [A] as an operator for transforming the coordinate

$$\{b\} = [A] \{a\}$$

Vector {a} is transformed to another Vector {b} of a different magnitude and a different direction by operation of Matrix [A].

Eigenvalue and Eigenvector

$$ex. \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$$

Eigenvalues : $\lambda = 4.41$, 1.59

Eigenvectors: $\{1, 2.41\}^{T}, \{1, -0.41\}^{T}$

POD of Random Field with a Singular Condition

ex.
$$\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} = \begin{bmatrix} R_p \end{bmatrix}$$

Eigenvalues: $\lambda = a$ (multiple root)

Eigenvectors: Indeterminate!

Uncorrelated with the same variances!

Merits of POD

- Observe phenomena by most efficient coordinates
- Extract hidden systematic structures from random information
- A significant reduction in amount of information that needs to be stored