

Nomenclature

A : Sectional area, B : Building width, C_a : Sonic velocity, D : Building depth, E : Elastic modulus, E_{eq} : Equivalent elastic parameter, f : Frequency, f_0 : Natural frequency, g : Gravity acceleration, H : Building height, I : Geometrical moment of inertia, $I_u(z)$: Turbulence intensity at height z, L : Representative building length, L_{ux} : Turbulence scale, N_0 : Initial stress, p_i : Internal pressure, q : Reference velocity pressure, R : Representative length of topography, $S_u(f)$: Power spectra of wind speed, U : Reference mean wind speed, U(z) : Mean wind peed at height z, V_0 : Volume of internal space, Z_G : Gradient height, z_0 : Roughness length, z_{ref} : Reference height, v : Dynamic viscosity, ρ : Air density, ρ_S : Building density, σ_u : Standard deviation of wind speed, ζ : Damping ratio, ζ_a : Acoustic damping ratio

Low-rise Buildings

- Aylesbury comparative experiment
- Texas Tech Building

