

Inflow through the
$$(dy \times dz)$$
 plane:

$$\rho(u - \frac{1}{2} \frac{\partial u}{\partial x} dx) dy dz - \rho(u + \frac{1}{2} \frac{\partial u}{\partial x} dx) dy dz$$

$$= -\rho - \frac{\partial u}{\partial x} dx dy dz \qquad (1)$$
Inflow through the $(dz \times dx)$ plane:

$$= -\rho - \frac{\partial v}{\partial y} dx dy dz \qquad (2)$$
Inflow through the $(dx \times dy)$ plane:

$$= -\rho - \frac{\partial w}{\partial z} dx dy dz \qquad (3)$$

Law of Conservation of Mass
(Incompressive Fluid) : Eq.(1)+Eq.(2)+Eq.(3)=0

$$-\rho \frac{\partial u}{\partial x} dx dy dz - \rho \frac{\partial v}{\partial y} dx dy dz - \rho \frac{\partial w}{\partial z} dx dy dz = 0$$

Equation of Continuity:
 $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$
 $(\text{div } \vec{v} = 0)$

Equation of Continuity:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

$$u = \frac{\partial \phi}{\partial x}, \quad v = \frac{\partial \phi}{\partial y}, \quad w = \frac{\partial \phi}{\partial z}$$

$$\phi: \text{ Velocity potential}$$
Laplace Equation:

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$

Incompressive Flow (Law of conservation of mass) $\rho A_A U_A = \rho A_B U_B = m$ *m* : Air mass of inflow and outflow portions Increase of kinetic energy during unit time $\frac{m}{2} (U_B^2 - U_A^2)$ (1) Increase of potential energy during unit time $mg (z_B - z_A)$ (2) Work done by pressure difference during unit time $(P_A A_A) U_A - (P_B A_B) U_B$ (3) ρ : Air density, U_i : Wind speed at point *i* P_i : Pressure at point *i*, *g* : Gravity acceleration z_i : Altitude of point *i*

Changing rate
$$(\delta f / \delta t)$$
 of a property f
 $f + \delta f = f(x + \delta x, y + \delta y, z + \delta z, t + \delta t)$
 $= f(x, y, z, t) + \frac{\partial f}{\partial x} \delta x + \frac{\partial f}{\partial y} \delta y + \frac{\partial f}{\partial z} \delta z + \frac{\partial f}{\partial t} \delta t + O(\delta t^2)$
 $\delta t \rightarrow 0$, substituting Eq.(a)
 $\frac{Df}{Dt} = \frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial y} + w \frac{\partial f}{\partial z}$
Substantial Acceleration
 $\frac{Du}{Dt} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}$

Changing rate $(\delta f / \delta t)$ of a property f $f + \delta f = f(x + \delta x, y + \delta y, z + \delta z, t + \delta t)$ $= f(x, y, z, t) + \frac{\partial f}{\partial x} \delta x + \frac{\partial f}{\partial y} \delta y + \frac{\partial f}{\partial z} \delta z + \frac{\partial f}{\partial t} \delta t$ $+ O(\delta t^2)$ $\delta t \rightarrow 0$, substituting Eq.(a) $\frac{Df}{Dt} = \frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial y} + w \frac{\partial f}{\partial z}$ Substantial Acceleration $\frac{Du}{Dt} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}$

Convective acceleration **Navier Stokes Equations:** Inertial force per unit volume $\rho \left[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right]$ Local (Instantianeous) acceleration $\frac{\partial p}{\partial x} + \mu \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right]$ Pressure gradient Viscous stress

Navier Stokes Equations: $\rho \left[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial v} + w \frac{\partial u}{\partial z}\right]$ $= -\frac{\partial p}{\partial r} + \mu \left[\frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right]$ $\rho \left[\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right]$ $= -\frac{\partial p}{\partial y} + \mu \left[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right]$ $\rho \left[\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right]$ $= -\frac{\partial p}{\partial \tau} + \mu \left[\frac{\partial^2 w}{\partial r^2} + \frac{\partial^2 w}{\partial v^2} + \frac{\partial^2 w}{\partial \tau^2} \right]$

Non-dimensional expression of Navier Stokes
Equations:

$$\frac{\partial u^{*}}{\partial t^{*}} + u^{*} \frac{\partial u^{*}}{\partial x^{*}} + v^{*} \frac{\partial u^{*}}{\partial y^{*}} + w^{*} \frac{\partial u^{*}}{\partial z^{*}}$$

$$= -\frac{\partial p^{*}}{\partial x^{*}} + \frac{1}{Re} \left[\frac{\partial^{2} u^{*}}{\partial x^{*2}} + \frac{\partial^{2} u^{*}}{\partial y^{*2}} + \frac{\partial^{2} u^{*}}{\partial z^{*2}} \right]$$

$$x^{*} = \frac{x}{L}, \quad y^{*} = \frac{y}{L}, \quad z^{*} = \frac{z}{L}, \quad t^{*} = \frac{t}{L}, \quad p^{*} = \frac{p}{\rho U^{2}}$$

$$u^{*} = \frac{u}{U}, \quad v^{*} = \frac{v}{U}, \quad w^{*} = \frac{w}{U}, \quad Re = \frac{\rho UL}{\mu}$$

Important Regimes for Structures
Sub-critical $5 \times 10^3 < Re < 3 \times 10^5$
Surface boundary layer : Laminar
Separation points: $\theta_s = 85^\circ$
Separated shear layer: Turbulent in wake (Widest wake
Drag Coefficient : $C_D = 1.2$
Vortices : Very periodic
Supercritical $3 \times 10^5 < Re < 6 \times 10^5$
Surface boundary layer : Laminar \rightarrow Turbulent θ > 85°
Separation points: $\theta_{s} = 120^{\circ}$
Separated shear layer: Narrow Wake-width
Drag Coefficient : $C_D = 0.3$
Vortices : Lose periodicity
Post-supercritical $6 \times 10^5 < Re$
Surface boundary layer : Fully turbulent
Separation points: $\theta_{\rm S} = 100^{\circ}$
Separated shear layer: Wider wake-width
Drag Coefficient : $C_D = 0.6 \ (Re \approx 4 \times 10^6)$
Vortices : Periodic

Velocity Pressure and Wind Pressure Coefficient

Wind Forces

$$F_X = \int_S p \cos \theta h \, ds$$

 $F_Y = \int_S p \sin \theta h \, ds$
 $h : \text{Body length}$
Wind Force Coefficients
 $C_{FX} = \frac{F_X}{\frac{1}{2}\rho U_R^2 A}, \quad C_{FY} = \frac{F_Y}{\frac{1}{2}\rho U_R^2 A}$
 $A : \text{Projected area} = Bh$

